Research Models

5xFAD

Synonyms: 5XFAD APP/PS1, Tg6799, Tg-5xFAD

Tools

Back to the Top

Species: Mouse
Genes: APP, PSEN1
Mutations: APP KM670/671NL (Swedish), APP I716V (Florida), APP V717I (London), PSEN1 M146L (A>C), PSEN1 L286V
Modification: APP: Transgenic; PSEN1: Transgenic
Disease Relevance: Alzheimer's Disease
Strain Name: B6SJL-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
Genetic Background: (C57BL/6 x SJL)F1
Availability: The Jackson Lab; available through the JAX MMRRC Stock# 034840; Live

Summary

These widely-used mice recapitulate many AD-related phenotypes and have a relatively early and aggressive presentation. The Tg6799 line, which expresses high levels of mutant APP and PSEN1, was generated along with two other lines with medium (Tg7031), and low (Tg7092), expression levels. The Tg6799 line is now the most widely used of the three, and is also available on a congenic background (see below).

The 5xFAD model rapidly develops severe amyloid pathology. These mice accumulate high levels of intraneuronal Aβ42 around 1.5 months of age with amyloid deposition rapidly following around two months, first in the subiculum and layer 5 of the cortex and increasing rapidly with age. Plaques spread throughout the hippocampus and cortex by six months of age. Gliosis also begins around two months, developing in parallel with plaque deposition. Synapse degeneration is also observed (at approximately four months) as well as neuronal loss and deficits in spatial learning (at approximately four to five months) (Oakley et al., 2006). Tangles are not typical in this model. LTP is normal in young animals, but becomes impaired around six months (Kimura et al., 2009). Specifically, in hippocampal slices from mice younger than four months old, I/O curves of fEPSPs in response to different stimulation strengths were not different from those of wild-type controls; but the I/O responses at Schaffer collateral-CA1 synapses in 5XFAD mice at six months showed deficits when compared with those of their wild-type littermate controls.

This model was previously available at The Jackson Lab as Stock# 006554.

Related Strains

B6.Cg-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax
The Jackson Lab; the JAX MMRRC Stock# 034848 (formerly Jackson Lab Stock# 008730)
This congenic strain was generated by backcrossing to C57BL/6J mice. The retinal degeneration allele Pde6brd1 was bred out of the original strain. The Jackson Lab has observed a less robust amyloid phenotype in congenic animals compared with those on a hybrid B6SJL background.

Phenotype Timeline

When visualized, these models will distributed over a 18 month timeline demarcated at the following intervals: 1mo, 3mo, 6mo, 9mo, 12mo, 15mo, 18mo+.

Observed

Absent

  • Tangles

Unknown

Plaques

Amyloid deposition begins at 1.5 months and reaches high levels especially in subiculum and deep cortical layers. Aβ42 also accumulates intraneuronally in an aggregated form within the soma and neurites starting at 1.5 months (Oakley et al., 2006).

Tangles

Absent.

Neuronal Loss

Neuron loss in cortical layer 5 and subiculum.

Gliosis

Gliosis begins at 2 months (Oakley et al., 2006).

Synaptic Loss

Synaptic markers synaptophysin, syntaxin, and PSD-95 decrease with age and are significantly reduced by 9 and 12 months.

Changes in LTP/LTD

LTP is normal in young animals, but becomes impaired around 6 months (Kimura et al., 2009); specifically, in hippocampal slices from < 4-month-old mice, I/O curves of fEPSPs were not different from those of wild-type controls, but the I/O responses at Schaffer collateral-CA1 synapses at 6 months were impaired.

Cognitive Impairment

Impaired spatial memory in Y-maze test at 4-5 months. Impaired stress-related memory, specifically significantly lower levels of contextual freezing at 6 months. Impaired remote memory stabilization at < 4 months.

COMMENTS / QUESTIONS

Make a comment or submit a question

To make a comment you must login or register.

Comments

No Available Comments

References

Paper Citations

  1. . Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006 Oct 4;26(40):10129-40. PubMed.
  2. . Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol Dis. 2009 Feb;33(2):229-35. Epub 2008 Nov 5 PubMed.

External Citations

  1. The Jackson Lab; the JAX MMRRC Stock# 034848
  2. JAX MMRRC Stock# 034840

Further Reading

Papers

  1. . Early-onset Formation of Parenchymal Plaque Amyloid Abrogates Cerebral Microvascular Amyloid Accumulation in Transgenic Mice. J Biol Chem. 2014 Jun 20;289(25):17895-17908. Epub 2014 May 14 PubMed.
  2. . Crucial role of calbindin-D28k in the pathogenesis of Alzheimer's disease mouse model. Cell Death Differ. 2014 May 23; PubMed.
  3. . Amyloid Plaque-Independent Deficit of Early Postnatal Visual Cortical Plasticity in the 5XFAD Transgenic Model of Alzheimer's Disease. J Alzheimers Dis. 2014 May 20; PubMed.