He Y, Chen Z, Evans A.
Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease.
J Neurosci. 2008 Apr 30;28(18):4756-66.
PubMed.
Arthur Toga Keck School of Medicine of USC, The Institute for Neuroimaging and Informatics
Posted:
This just published paper takes an interesting approach to analyzing structural MRI in AD patients. The authors establish a relationship between regional changes in cortical thickness to identify structural brain networks. As with other previous studies examining cortical changes such as thickness, ventricular enlargement, or morphological assessment of specific structures and regions (frequently in the limbic system), these studies provide a framework for understanding the pathophysiology of AD. This paper also is one of the first to integrate what are frequently independent assessments of regional cortical changes in AD. Since the brain is highly connected and any disruption of that connection likely has profound behavioral consequences, this kind of topological approach is an important contribution. Related findings using a mapping approach that incorporates a temporal domain (Thompson et al., 2003) have also demonstrated disruption of systems and networks in AD. Collectively, these approaches, in combination with functional measures, will help establish a comprehensive view of the degenerative effects of AD.…More
References:
Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, Hong MS, Dittmer SS, Doddrell DM, Toga AW.
Dynamics of gray matter loss in Alzheimer's disease.
J Neurosci. 2003 Feb 1;23(3):994-1005.
PubMed.
Comments
Keck School of Medicine of USC, The Institute for Neuroimaging and Informatics
This just published paper takes an interesting approach to analyzing structural MRI in AD patients. The authors establish a relationship between regional changes in cortical thickness to identify structural brain networks. As with other previous studies examining cortical changes such as thickness, ventricular enlargement, or morphological assessment of specific structures and regions (frequently in the limbic system), these studies provide a framework for understanding the pathophysiology of AD. This paper also is one of the first to integrate what are frequently independent assessments of regional cortical changes in AD. Since the brain is highly connected and any disruption of that connection likely has profound behavioral consequences, this kind of topological approach is an important contribution. Related findings using a mapping approach that incorporates a temporal domain (Thompson et al., 2003) have also demonstrated disruption of systems and networks in AD. Collectively, these approaches, in combination with functional measures, will help establish a comprehensive view of the degenerative effects of AD.…More
References:
Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, Hong MS, Dittmer SS, Doddrell DM, Toga AW. Dynamics of gray matter loss in Alzheimer's disease. J Neurosci. 2003 Feb 1;23(3):994-1005. PubMed.
Make a Comment
To make a comment you must login or register.