Gu X, Li C, Wei W, Lo V, Gong S, Li SH, Iwasato T, Itohara S, Li XJ, Mody I, Heintz N, Yang XW. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron. 2005 May 5;46(3):433-44. PubMed.
Recommends
Please login to recommend the paper.
Comments
CWRU
Cortico-Cortical Connectivity: A Key Aspect to Neurodegeneration
The work from William Yang and colleagues (Gu et al., 2005), while directed toward Huntington’s disease (HD), is likely broadly applicable to a number of neurodegenerative disorders including Alzheimer disease (AD). Using two different Cre/LoxP conditional mouse models of HD, these investigators show that restricting mutant huntingtin (mhtt) expression to cortical pyramidal neurons, while capable of forming intracellular aggregates, had no effect on neuropathological hallmarks (reactive gliosis, dysmorphic neuritis, and dark neuron degeneration) nor elicited motor deficits. By marked contrast, expression of mhtt in all of the neurons of the brain resulted in the full spectrum of pathological and motor changes associated with HD. While the issue of whether mhtt expression in pyramidal neurons is necessary for toxicity was not addressed, the overall conclusion that pathological cell-cell interactions are significant contributors to neuronal toxicity in vivo is supported by this and other studies in human (Ferrer et al., 1994) and mouse models (Kosinski et al., 1999). The implications of this study go far beyond HD and are likely significant in a number of brain disorders. Indeed, aberrations in cortical circuitry are also thought to play a significant role in the pathogenesis of AD (De Lacoste and White, 1993) and provide an explanation not only for the regional selectivity of the disease, but also the progressive nature and pattern of the disease. As such, and in light of the current findings showing that expression of mhtt in a single neuronal population was insufficient to cause disease (Gu et al., 2005), the culprit in AD may operate at some distance from the scene of the crime. The question as to whether this makes juxtaposed elements, such as phospho-tau and intracellular amyloid aggregates, accomplices or innocent bystanders (Rottkamp et al., 2002; Lee et al., 2005) is key to understand before we leave the crime scene and cast our nets further afield. Gemma Casadesus, Mark A. Smith and George Perry
References:
De Lacoste MC, White CL. The role of cortical connectivity in Alzheimer's disease pathogenesis: a review and model system. Neurobiol Aging. 1993 Jan-Feb;14(1):1-16. PubMed.
Ferrer I, Kulisevsky J, Gonzalez G, Escartin A, Chivite A, Casas R. Parvalbumin-immunoreactive neurons in the cerebral cortex and striatum in Huntington’s disease. Neurodegeneration. 1994 Jun;3(2):169–73.
Gu X, Li C, Wei W, Lo V, Gong S, Li SH, Iwasato T, Itohara S, Li XJ, Mody I, Heintz N, Yang XW. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron. 2005 May 5;46(3):433-44. PubMed.
Kosinski CM, Cha JH, Young AB, Mangiarini L, Bates G, Schiefer J, Schwarz M. Intranuclear inclusions in subtypes of striatal neurons in Huntington's disease transgenic mice. Neuroreport. 1999 Dec 16;10(18):3891-6. PubMed.
Lee HG, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X, Takeda A, Nunomura A, Smith MA. Tau phosphorylation in Alzheimer's disease: pathogen or protector?. Trends Mol Med. 2005 Apr;11(4):164-9. PubMed.
Rottkamp CA, Atwood CS, Joseph JA, Nunomura A, Perry G, Smith MA. The state versus amyloid-beta: the trial of the most wanted criminal in Alzheimer disease. Peptides. 2002 Jul;23(7):1333-41. PubMed.
View all comments by Gemma CasadesusMake a Comment
To make a comment you must login or register.