Coulon A, Rabiller F, Takalo M, Roy A, Martiskainen H, Siedlecki-Wullich D, Mendes T, Lemeu C, Carvalho L-I, Ehrardt A, MelodeFerias AR, Hulsman M, Najdek C, Lannette-Weimann N, Freire-Regatillo A, Amouyel P, Charbonnier C, Dols-Icardo O, Jeskanen H, Kuulasmaa T, Kurki M, Hardy J, Wagner M, Heikkinen S, Holstege H, Makinen P, Nicolas G, Mead S, Wagner M, Ramirez A, Rauramaa T, Palotie A, Sims R, Soininen H, vanSwieten J, Williams J, Willman R-M, Bellenguez C, Grenier-Boley B, Gelle C, Lambert E, Ayral A-. Neuronal downregulation of PLCG2 impairs synaptic function and elicits Alzheimer disease hallmarks. 2024 May 01 10.1101/2024.04.29.591575 (version 1) bioRxiv.
Recommends
Please login to recommend the paper.
Comments
Macquarie University
This study by Coulon et al. is a tour de force, identifying and characterising an exciting neuronal function for the AD gene PLCγ2, which encodes a phospholipase enzyme involved in signal transduction.
The multilaboratory team established a loss-of-function (LOF) screen for AD risk genes in primary neurons, measuring effects on synaptic morphology and function, based on assessment of synaptic density, using an shRNA lentiviral knockdown system in a rat neuronal culture. Short-hairpin RNAs (shRNAs) for 198 genes in more than 70 AD risk loci were tested. The screen identified genes whose knockdown resulted in high, or in low, synaptic density. These included PLCγ2, for which knockdown was associated with reduced synaptic density, with concomitant effects on electrophysiologic properties of the neurons in culture.
Synaptic impairment may be a linking feature of several GWAS genes and synaptic failure is likely a key step early in mild cognitive impairment and AD.
To translate their finding to a complete brain system, the authors induced PLCγ2 knockdown in mouse dentate gyrus cells, a key cell type for hippocampal function, which resulted in decreased neuronal complexity and synapse formation, confirming the effect of PLCγ2 in a mouse model.
The study furthermore assessed LOF variants of PLCγ2 in genetic screens in AD patients from different clinical cohorts, identifying rare LOF variants of PLCγ2 that raise the risk of AD 10-fold. Interestingly, there are also PLCγ2 variants with lower risk for AD (Sims et al., 2017). The mechanisms of both LOF and protective variants may be reconciled by the synaptic function proposed by the authors.
Interestingly, lower levels of PLCγ2, achieved by knockdown in human cultured neurons, that impaired synaptic function resulted in increased APP and Aβ. It also increased total tau and tau phosphorylation at multiple sites, which correlated with changes in phosphorylation status in kinases Akt (serine-473) and its substrate GSK3β (tyrosine-216), indicating a modulation of this pathway by PLCγ2 reduction—though, here the Akt serine-9 phosphorylation would be of interest as a readout of GSK3β regulation by Akt (Cross et al., 1995). Furthermore, inhibitor experiments may clarify the involvement of these kinases, or other kinases, downstream of PLCγ2, which may include PKC and CaMKinases, both known to be involved in synaptic function (Xia and Storm, 2005). Consistent with effects of PLCγ2 on tau, lower p-tau levels of the key epitope threonine-181 had been found in CSF of carriers of the protective P522R variant of PLCG2 (Kleineidam et al., 2020).
Notably, restoring PLCγ2 expression mitigated phenotypes entirely, suggesting PLCG2 reduction is a persistent driver in the synaptic dysfunction and APP/tau aberrations.
It will be interesting to see if PLCγ2 downregulation impairs synapses through Aβ and/or tau or through independent mechanisms. Notably, a recent study proposed that PLCGγ2 controls myelin-enriched lipids, suggesting a mechanism involving regulation of lipid metabolism (Hopp et al., 2023).
Key advances of the study are:
It should, however, be kept in mind that the physiologic function of this pathway, both in neuronal synapse formation and maintenance, as well as in microglial cells, needs to be understood to move on with a therapeutic strategy targeting PLCγ2 activation. In this context, PLCγ2 is highly expressed in hematopoietic cells, which may be important when targeting this factor (e.g., Xu et al., 2023).
References:
Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, Kunkle BW, Boland A, Raybould R, Bis JC, Martin ER, Grenier-Boley B, Heilmann-Heimbach S, Chouraki V, Kuzma AB, Sleegers K, Vronskaya M, Ruiz A, Graham RR, Olaso R, Hoffmann P, Grove ML, Vardarajan BN, Hiltunen M, Nöthen MM, White CC, Hamilton-Nelson KL, Epelbaum J, Maier W, Choi SH, Beecham GW, Dulary C, Herms S, Smith AV, Funk CC, Derbois C, Forstner AJ, Ahmad S, Li H, Bacq D, Harold D, Satizabal CL, Valladares O, Squassina A, Thomas R, Brody JA, Qu L, Sánchez-Juan P, Morgan T, Wolters FJ, Zhao Y, Garcia FS, Denning N, Fornage M, Malamon J, Naranjo MC, Majounie E, Mosley TH, Dombroski B, Wallon D, Lupton MK, Dupuis J, Whitehead P, Fratiglioni L, Medway C, Jian X, Mukherjee S, Keller L, Brown K, Lin H, Cantwell LB, Panza F, McGuinness B, Moreno-Grau S, Burgess JD, Solfrizzi V, Proitsi P, Adams HH, Allen M, Seripa D, Pastor P, Cupples LA, Price ND, Hannequin D, Frank-García A, Levy D, Chakrabarty P, Caffarra P, Giegling I, Beiser AS, Giedraitis V, Hampel H, Garcia ME, Wang X, Lannfelt L, Mecocci P, Eiriksdottir G, Crane PK, Pasquier F, Boccardi V, Henández I, Barber RC, Scherer M, Tarraga L, Adams PM, Leber M, Chen Y, Albert MS, Riedel-Heller S, Emilsson V, Beekly D, Braae A, Schmidt R, Blacker D, Masullo C, Schmidt H, Doody RS, Spalletta G, Jr WT, Fairchild TJ, Bossù P, Lopez OL, Frosch MP, Sacchinelli E, Ghetti B, Yang Q, Huebinger RM, Jessen F, Li S, Kamboh MI, Morris J, Sotolongo-Grau O, Katz MJ, Corcoran C, Dunstan M, Braddel A, Thomas C, Meggy A, Marshall R, Gerrish A, Chapman J, Aguilar M, Taylor S, Hill M, Fairén MD, Hodges A, Vellas B, Soininen H, Kloszewska I, Daniilidou M, Uphill J, Patel Y, Hughes JT, Lord J, Turton J, Hartmann AM, Cecchetti R, Fenoglio C, Serpente M, Arcaro M, Caltagirone C, Orfei MD, Ciaramella A, Pichler S, Mayhaus M, Gu W, Lleó A, Fortea J, Blesa R, Barber IS, Brookes K, Cupidi C, Maletta RG, Carrell D, Sorbi S, Moebus S, Urbano M, Pilotto A, Kornhuber J, Bosco P, Todd S, Craig D, Johnston J, Gill M, Lawlor B, Lynch A, Fox NC, Hardy J, ARUK Consortium, Albin RL, Apostolova LG, Arnold SE, Asthana S, Atwood CS, Baldwin CT, Barnes LL, Barral S, Beach TG, Becker JT, Bigio EH, Bird TD, Boeve BF, Bowen JD, Boxer A, Burke JR, Burns JM, Buxbaum JD, Cairns NJ, Cao C, Carlson CS, Carlsson CM, Carney RM, Carrasquillo MM, Carroll SL, Diaz CC, Chui HC, Clark DG, Cribbs DH, Crocco EA, DeCarli C, Dick M, Duara R, Evans DA, Faber KM, Fallon KB, Fardo DW, Farlow MR, Ferris S, Foroud TM, Galasko DR, Gearing M, Geschwind DH, Gilbert JR, Graff-Radford NR, Green RC, Growdon JH, Hamilton RL, Harrell LE, Honig LS, Huentelman MJ, Hulette CM, Hyman BT, Jarvik GP, Abner E, Jin LW, Jun G, Karydas A, Kaye JA, Kim R, Kowall NW, Kramer JH, LaFerla FM, Lah JJ, Leverenz JB, Levey AI, Li G, Lieberman AP, Lunetta KL, Lyketsos CG, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Morris JC, Murrell JR, Myers AJ, O'Bryant S, Olichney JM, Pankratz VS, Parisi JE, Paulson HL, Perry W, Peskind E, Pierce A, Poon WW, Potter H, Quinn JF, Raj A, Raskind M, Reisberg B, Reitz C, Ringman JM, Roberson ED, Rogaeva E, Rosen HJ, Rosenberg RN, Sager MA, Saykin AJ, Schneider JA, Schneider LS, Seeley WW, Smith AG, Sonnen JA, Spina S, Stern RA, Swerdlow RH, Tanzi RE, Thornton-Wells TA, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Van Eldik LJ, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Wilhelmsen KC, Williamson J, Wingo TS, Woltjer RL, Wright CB, Yu CE, Yu L, Garzia F, Golamaully F, Septier G, Engelborghs S, Vandenberghe R, De Deyn PP, Fernadez CM, Benito YA, Thonberg H, Forsell C, Lilius L, Kinhult-Stählbom A, Kilander L, Brundin R, Concari L, Helisalmi S, Koivisto AM, Haapasalo A, Dermecourt V, Fievet N, Hanon O, Dufouil C, Brice A, Ritchie K, Dubois B, Himali JJ, Keene CD, Tschanz J, Fitzpatrick AL, Kukull WA, Norton M, Aspelund T, Larson EB, Munger R, Rotter JI, Lipton RB, Bullido MJ, Hofman A, Montine TJ, Coto E, Boerwinkle E, Petersen RC, Alvarez V, Rivadeneira F, Reiman EM, Gallo M, O'Donnell CJ, Reisch JS, Bruni AC, Royall DR, Dichgans M, Sano M, Galimberti D, St George-Hyslop P, Scarpini E, Tsuang DW, Mancuso M, Bonuccelli U, Winslow AR, Daniele A, Wu CK, GERAD/PERADES, CHARGE, ADGC, EADI, Peters O, Nacmias B, Riemenschneider M, Heun R, Brayne C, Rubinsztein DC, Bras J, Guerreiro R, Al-Chalabi A, Shaw CE, Collinge J, Mann D, Tsolaki M, Clarimón J, Sussams R, Lovestone S, O'Donovan MC, Owen MJ, Behrens TW, Mead S, Goate AM, Uitterlinden AG, Holmes C, Cruchaga C, Ingelsson M, Bennett DA, Powell J, Golde TE, Graff C, De Jager PL, Morgan K, Ertekin-Taner N, Combarros O, Psaty BM, Passmore P, Younkin SG, Berr C, Gudnason V, Rujescu D, Dickson DW, Dartigues JF, DeStefano AL, Ortega-Cubero S, Hakonarson H, Campion D, Boada M, Kauwe JK, Farrer LA, Van Broeckhoven C, Ikram MA, Jones L, Haines JL, Tzourio C, Launer LJ, Escott-Price V, Mayeux R, Deleuze JF, Amin N, Holmans PA, Pericak-Vance MA, Amouyel P, van Duijn CM, Ramirez A, Wang LS, Lambert JC, Seshadri S, Williams J, Schellenberg GD. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nat Genet. 2017 Sep;49(9):1373-1384. Epub 2017 Jul 17 PubMed.
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995 Dec 21-28;378(6559):785-9. PubMed.
Xia Z, Storm DR. The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci. 2005 Apr;6(4):267-76. PubMed.
Kleineidam L, Chouraki V, Próchnicki T, van der Lee SJ, Madrid-Márquez L, Wagner-Thelen H, Karaca I, Weinhold L, Wolfsgruber S, Boland A, Martino Adami PV, Lewczuk P, Popp J, Brosseron F, Jansen IE, Hulsman M, Kornhuber J, Peters O, Berr C, Heun R, Frölich L, Tzourio C, Dartigues JF, Hüll M, Espinosa A, Hernández I, de Rojas I, Orellana A, Valero S, Stringa N, van Schoor NM, Huisman M, Scheltens P, Alzheimer’s Disease Neuroimaging Initiative (ADNI), Rüther E, Deleuze JF, Wiltfang J, Tarraga L, Schmid M, Scherer M, Riedel-Heller S, Heneka MT, Amouyel P, Jessen F, Boada M, Maier W, Schneider A, González-Pérez A, van der Flier WM, Wagner M, Lambert JC, Holstege H, Sáez ME, Latz E, Ruiz A, Ramirez A. PLCG2 protective variant p.P522R modulates tau pathology and disease progression in patients with mild cognitive impairment. Acta Neuropathol. 2020 Jun;139(6):1025-1044. Epub 2020 Mar 12 PubMed.
Hopp SC, Rogers JG, Smith S, Campos G, Miller H, Barannikov S, Kuri EG, Wang H, Han X, Bieniek KF, Weintraub ST, Palavicini JP. Multi-omics analyses reveal novel effects of PLCγ2 deficiency in the mouse brain. bioRxiv. 2023 Dec 8; PubMed.
Andreone BJ, Przybyla L, Llapashtica C, Rana A, Davis SS, van Lengerich B, Lin K, Shi J, Mei Y, Astarita G, Di Paolo G, Sandmann T, Monroe KM, Lewcock JW. Alzheimer's-associated PLCγ2 is a signaling node required for both TREM2 function and the inflammatory response in human microglia. Nat Neurosci. 2020 Aug;23(8):927-938. Epub 2020 Jun 8 PubMed.
Magno L, Lessard CB, Martins M, Lang V, Cruz P, Asi Y, Katan M, Bilsland J, Lashley T, Chakrabarty P, Golde TE, Whiting PJ. Alzheimer's disease phospholipase C-gamma-2 (PLCG2) protective variant is a functional hypermorph. Alzheimers Res Ther. 2019 Feb 2;11(1):16. PubMed.
Tsai AP, Dong C, Lin PB, Oblak AL, Viana Di Prisco G, Wang N, Hajicek N, Carr AJ, Lendy EK, Hahn O, Atkins M, Foltz AG, Patel J, Xu G, Moutinho M, Sondek J, Zhang Q, Mesecar AD, Liu Y, Atwood BK, Wyss-Coray T, Nho K, Bissel SJ, Lamb BT, Landreth GE. Genetic variants of phospholipase C-γ2 alter the phenotype and function of microglia and confer differential risk for Alzheimer's disease. Immunity. 2023 Sep 12;56(9):2121-2136.e6. Epub 2023 Sep 1 PubMed.
Visvanathan R, Utsuki T, Beck DE, Lendy E, Sun KL, Liu Y, Hering KW, Mesecar A, Zhang ZY, Putt KS. A novel fluorogenic reporter substrate for 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (PLCγ2): Application to high-throughput screening for activators to treat Alzheimer's disease. SLAS Discov. 2023 Jun;28(4):170-179. Epub 2023 Mar 17 PubMed.
Xu X, Wen X, Bhimani S, Moosa A, Parsons D, Ha H, Jin T. G protein-coupled receptor-mediated membrane targeting of PLCγ2 is essential for neutrophil chemotaxis. J Leukoc Biol. 2023 Jul 27;114(2):126-141. PubMed.
View all comments by Arne IttnerMake a Comment
To make a comment you must login or register.