Paper
- Alzforum Recommends
Palsdottir A, Helgason A, Palsson S, Bjornsson HT, Bragason BT, Gretarsdottir S, Thorsteinsdottir U, Olafsson E, Stefansson K. A drastic reduction in the life span of cystatin C L68Q carriers due to life-style changes during the last two centuries. PLoS Genet. 2008 Jun;4(6):e1000099. PubMed.
Please login to recommend the paper.
Comments
University of Massachusetts Medical School
The Bjornsson et al. study provides further evidence that DNA methylation differences between individuals increase with age. However, the study not only confirms this principle, but shows that genetic factors play a role in inter-individual methylation differences. It highlights the complexities when studying DNA methylation in aging. While it is thought that "environmental" factors such as alcohol, diet, perhaps medications, etc., play a role in modifying DNA methylation patterns in the genome, genetic factors could play a role as well. Recently, we identified in a postmortem brain study 2/50 gene loci that showed significant alterations in Alzheimer's subjects, as compared to controls (Siegmund et al., 2007). Interestingly, the changes in the Alzheimer's cohort, in terms of DNA methylation, appeared to reflect an acceleration of normal aging. Therefore, one could assume that the findings of Bjornsson et al. will be of great interest for aging-related disorders, including Alzheimer disease.
References:
Siegmund KD, Connor CM, Campan M, Long TI, Weisenberger DJ, Biniszkiewicz D, Jaenisch R, Laird PW, Akbarian S. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One. 2007;2(9):e895. PubMed.
View all comments by Schahram AkbarianUniversity of Southern California
Palsdottir et al. show in a fascinating analysis a major decrease in the age of death in carriers of hereditary cystatin C cerebral angiopathy (a L68Q mutation in the cystatin C gene) since the eighteenth century. The comparison with spouse lifespan is particularly striking because life expectancy of those surviving to adults was increasing at the same time as life expectancy of the L68Q carriers (“age of lethality penetrance”) was decreasing. In considering the possible environmental factors during these 200 years, the authors note the striking shift in diet composition, including a twofold greater carbohydrate intake (Fig. 7). It is also likely that the total caloric intake increased since the 1800s. Iceland suffered a major food shortage after the Viking age due to the increasingly cold climate: the population declined by about 35 percent and adult height shrank by two inches. As Einarsson (1573-1659) described it: "Formerly the earth produced all sorts of fruit, plants and roots. But now almost nothing grows.... Frost and cold torment people. The good years are rare.” The eighteenth century Icelanders were plausibly still under severe caloric restriction, compounded by micronutrient deficiency. Even in the later nineteenth century with improving climate, Iceland was one of the poorest countries in Europe.
If this view is valid, then we may consider that caloric restriction was protective for cystatin C L68Q penetrance at an early age. In fact, caloric restriction is protective in various mouse models of brain amyloidosis, familial dominant Alzheimer mutant genes, and of aortic atherosclerosis (Finch, 2007, Chapter 3.2.2; Patel et al. 2005; Wang et al. 2005). There is thus good rationale to examine cystatin C L68Q and other angiopathic mutations for responses to caloric restriction in mouse models as a new approach to prevention.
See also:
Einarsson O, quoted in Decline of the Vikings in Iceland.
Finch CE. 2007. The Biology of Human Longevity. Inflammation, Nutrition, and Aging in the Evolution of Lifespans. Academic Press: San Diego.
References:
Patel NV, Gordon MN, Connor KE, Good RA, Engelman RW, Mason J, Morgan DG, Morgan TE, Finch CE. Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiol Aging. 2005 Jul;26(7):995-1000. PubMed.
Wang J, Ho L, Qin W, Rocher AB, Seror I, Humala N, Maniar K, Dolios G, Wang R, Hof PR, Pasinetti GM. Caloric restriction attenuates beta-amyloid neuropathology in a mouse model of Alzheimer's disease. FASEB J. 2005 Apr;19(6):659-61. PubMed.