The toxic aggregates of Aβ are no longer thought to be amyloid fibrils, the components of amyloid plaques, but smaller soluble oligomeric aggregates of Aβ, or larger, but still soluble, protofibrils, which contain smaller aggregates as building blocks. A major problem in research on Aβ aggregation is that there appears to be a multitude of soluble oligomeric species of which some might be toxic and others perhaps not. These are difficult to isolate from Aβ aggregation mixtures made in vitro. In particular, they are difficult to keep stable from further aggregation into (less toxic) amyloid fibrils, which are the endpoint of Aβ aggregation and which assemble into amyloid plaques. Hence, soluble Aβ aggregates are difficult to characterize in detail. As a result, several groups try different tricks to stabilize the correct (most toxic) aggregate to enable detailed studies of its properties (see, e.g., [1,2]).
A major contester for the role as building block of the penultimate toxic aggregate is an Aβ "dimer" which has been identified in CSF samples from AD patients (3). In their elegant studies, Shankar et al. (3) also produced a synthetic dimer in which substitution of serine 26 in the Aβ peptide with cysteine 26 (the S26C mutant) results in a covalent disulfide bridge linking two monomeric units of Aβ40. This dimer was shown to be considerably more potent than wild-type Aβ in inhibiting long-term potentiation of memory (LTP) assays in mouse hippocampus. These results placed the S26C dimer as a candidate for a model of the neurotoxic dimer found in AD patients.
In the present article, O’Nuallain et al. in Dominic Walsh’s lab characterize the S26C dimer further. They find that it rapidly aggregates into large protofibril-like structures. These protofibrils are “synaptotoxic,” since they inhibit LTP, whereas the isolated S26C dimer or (reduced) S26C monomer are not. The protofibrils formed by S26C are morphologically similar to those formed by wild-type Aβ, and they appear to contain a significant amount of β-sheet secondary structure. Furthermore, the protofibrils formed by S26C are relatively stable towards further aggregation to amyloid fibrils. The authors conclude that dimer formation enables aggregation into stable toxic Aβ protofibrils.
Recently, Yamagushi et al. (4) employed another type of cysteine-linked dimer to stabilize protofibrils: They made C-terminal extensions of Aβ to link monomers into dimers at their C-termini. They argued that the dimer stabilized protofibrils by increasing the kinetic barrier for fibril formation. In our own work, we stabilized the protofibrillar state by using a disulfide bridge (double cysteine mutation) to lock the Aβ monomer into a hairpin conformation (the AβCC mutant). We showed that such Aβ hairpins readily form toxic oligomers and/or protofibrils, but not amyloid fibrils (2).
The present paper and those by Yamaguchi et al. (4) and Sandberg et al. (2) are all encouraging in similar ways and for a number of reasons. First, they all constitute new methods to “engineer” protofibrils while avoiding fibril formation. Second, they reveal similar and presumably significant features of the Aβ protofibrils: their overall dimensions and a large fraction of secondary β-sheet structure content. Third, they hint at very specific structural features of Aβ units in the protofibrils. For instance, the present work shows that linkage of residues 26 in two monomeric units is compatible with the protofibril structure, and Sandberg et al. show that Aβ in neurotoxic oligomers/protofibrils adopt a β-hairpin conformation. Fourth, the present study and that of Sandberg et al. both confirm the toxicity of Aβ protofibrils.
However, in my opinion, the structure and role of the Aβ dimer found in AD patients remains obscure. This is because basic physical chemistry predicts that the rate of protofibril formation must be enhanced every time monomer units are linked into dimers in a way that is compatible with the arrangement of Aβ monomer units within the protofibrils. This could be the explanation for why both the present S26E as well as C-terminally linked monomers result in rapid protofibril formation. Similar arguments may explain why the protofibrils formed by both are stable: the disulfides provide kinetic barriers to fibril formation.
It is, therefore, not certain that the present S26C or the C-terminally linked Aβ dimer actually mimics the dimer found in AD patients. The S26C dimer may, of course, still be a significant building block, and it would be important to find out what it looks like. However, given what is found in the present study by O’Nuallain et al., and my arguments above, I think that the major focus in research on structure of toxic Aβ aggregates now shifts from dimers to the protofibril.
References:
Ono K, Condron MM, Teplow DB.
Structure-neurotoxicity relationships of amyloid beta-protein oligomers.
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14745-50.
PubMed.
Sandberg A, Luheshi LM, Söllvander S, Pereira de Barros T, Macao B, Knowles TP, Biverstål H, Lendel C, Ekholm-Petterson F, Dubnovitsky A, Lannfelt L, Dobson CM, Härd T.
Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering.
Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15595-600.
PubMed.
Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ.
Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory.
Nat Med. 2008 Aug;14(8):837-42.
PubMed.
Yamaguchi T, Yagi H, Goto Y, Matsuzaki K, Hoshino M.
A disulfide-linked amyloid-beta peptide dimer forms a protofibril-like oligomer through a distinct pathway from amyloid fibril formation.
Biochemistry. 2010 Aug 24;49(33):7100-7.
PubMed.
Comments
SLU, Uppsala
The toxic aggregates of Aβ are no longer thought to be amyloid fibrils, the components of amyloid plaques, but smaller soluble oligomeric aggregates of Aβ, or larger, but still soluble, protofibrils, which contain smaller aggregates as building blocks. A major problem in research on Aβ aggregation is that there appears to be a multitude of soluble oligomeric species of which some might be toxic and others perhaps not. These are difficult to isolate from Aβ aggregation mixtures made in vitro. In particular, they are difficult to keep stable from further aggregation into (less toxic) amyloid fibrils, which are the endpoint of Aβ aggregation and which assemble into amyloid plaques. Hence, soluble Aβ aggregates are difficult to characterize in detail. As a result, several groups try different tricks to stabilize the correct (most toxic) aggregate to enable detailed studies of its properties (see, e.g., [1,2]).
A major contester for the role as building block of the penultimate toxic aggregate is an Aβ "dimer" which has been identified in CSF samples from AD patients (3). In their elegant studies, Shankar et al. (3) also produced a synthetic dimer in which substitution of serine 26 in the Aβ peptide with cysteine 26 (the S26C mutant) results in a covalent disulfide bridge linking two monomeric units of Aβ40. This dimer was shown to be considerably more potent than wild-type Aβ in inhibiting long-term potentiation of memory (LTP) assays in mouse hippocampus. These results placed the S26C dimer as a candidate for a model of the neurotoxic dimer found in AD patients.
In the present article, O’Nuallain et al. in Dominic Walsh’s lab characterize the S26C dimer further. They find that it rapidly aggregates into large protofibril-like structures. These protofibrils are “synaptotoxic,” since they inhibit LTP, whereas the isolated S26C dimer or (reduced) S26C monomer are not. The protofibrils formed by S26C are morphologically similar to those formed by wild-type Aβ, and they appear to contain a significant amount of β-sheet secondary structure. Furthermore, the protofibrils formed by S26C are relatively stable towards further aggregation to amyloid fibrils. The authors conclude that dimer formation enables aggregation into stable toxic Aβ protofibrils.
Recently, Yamagushi et al. (4) employed another type of cysteine-linked dimer to stabilize protofibrils: They made C-terminal extensions of Aβ to link monomers into dimers at their C-termini. They argued that the dimer stabilized protofibrils by increasing the kinetic barrier for fibril formation. In our own work, we stabilized the protofibrillar state by using a disulfide bridge (double cysteine mutation) to lock the Aβ monomer into a hairpin conformation (the AβCC mutant). We showed that such Aβ hairpins readily form toxic oligomers and/or protofibrils, but not amyloid fibrils (2).
The present paper and those by Yamaguchi et al. (4) and Sandberg et al. (2) are all encouraging in similar ways and for a number of reasons. First, they all constitute new methods to “engineer” protofibrils while avoiding fibril formation. Second, they reveal similar and presumably significant features of the Aβ protofibrils: their overall dimensions and a large fraction of secondary β-sheet structure content. Third, they hint at very specific structural features of Aβ units in the protofibrils. For instance, the present work shows that linkage of residues 26 in two monomeric units is compatible with the protofibril structure, and Sandberg et al. show that Aβ in neurotoxic oligomers/protofibrils adopt a β-hairpin conformation. Fourth, the present study and that of Sandberg et al. both confirm the toxicity of Aβ protofibrils.
However, in my opinion, the structure and role of the Aβ dimer found in AD patients remains obscure. This is because basic physical chemistry predicts that the rate of protofibril formation must be enhanced every time monomer units are linked into dimers in a way that is compatible with the arrangement of Aβ monomer units within the protofibrils. This could be the explanation for why both the present S26E as well as C-terminally linked monomers result in rapid protofibril formation. Similar arguments may explain why the protofibrils formed by both are stable: the disulfides provide kinetic barriers to fibril formation.
It is, therefore, not certain that the present S26C or the C-terminally linked Aβ dimer actually mimics the dimer found in AD patients. The S26C dimer may, of course, still be a significant building block, and it would be important to find out what it looks like. However, given what is found in the present study by O’Nuallain et al., and my arguments above, I think that the major focus in research on structure of toxic Aβ aggregates now shifts from dimers to the protofibril.
References:
Ono K, Condron MM, Teplow DB. Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14745-50. PubMed.
Sandberg A, Luheshi LM, Söllvander S, Pereira de Barros T, Macao B, Knowles TP, Biverstål H, Lendel C, Ekholm-Petterson F, Dubnovitsky A, Lannfelt L, Dobson CM, Härd T. Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15595-600. PubMed.
Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med. 2008 Aug;14(8):837-42. PubMed.
Yamaguchi T, Yagi H, Goto Y, Matsuzaki K, Hoshino M. A disulfide-linked amyloid-beta peptide dimer forms a protofibril-like oligomer through a distinct pathway from amyloid fibril formation. Biochemistry. 2010 Aug 24;49(33):7100-7. PubMed.