. Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron. 2003 Dec 18;40(6):1133-45. PubMed.

Recommends

Please login to recommend the paper.

Comments

Make a Comment

To make a comment you must login or register.

Comments on Primary Papers and News

  1. Regarding the paradoxical actions of TGFβ in brain, where the factor appears to be either protective against neuronal degeneration, as reported in this study, or deleterious, promoting inflammation, hydrocephalus, and vascular fibrosis and amyloidosis, (Wyss-Coray et al., 1995; 1997; 2000a), the following aspects should be taken into consideration:

    1. The importance of the amount of TGFβ released. At physiological amounts the factor may be anti-inflammatory and neurotrophic, while when released in excess or in the absence of counter-regulatory elements, TGFbeta may turn to be proinflammatory and cause severe vascular abnormalities. There are other instances where the chronic dysregulated production of angiogenic factors, e.g., VEFG, have deleterious consequences (Detmar et al., 1998).

    2. Although the studies describing protective and detrimental effects of TGFβ have been performed on apparently the same lines of TGFβ overexpressing mice, different animal batches were used. The present study by Brionne et al. does not disclose if, in the same animals where TGFβ protected against kainic-acid induced degeneration, there were signs of vascular alteration (e.g., fibrosis and deposition of thioflavin-positive material) or glia activation, that were reported in the same lines previously (Wyss-Coray and col., 1995, 1997, 2000a). Whether the deleterious actions on vessels coexist with the protective actions on neurons is an intriguing question. If they don’t, a comparison between brain TGFβ contents in the animals used in the different studies would have helped to clarify if the opposite actions of TGFβ correlate with different degrees of production of the cytokine.

    3. Studies in our lab using TGFβ-overexpressing mice have confirmed the pathological actions of the cytokine, including severe astrocytosis and microglia activation, hydrocephalus, tissue damage and robust deposition of thioflavin-positive material in vessels and meninges as reported by Wyss-Coray et al., 2000b. However, in contradiction with previous reports (Wyss-Coray et al., 1997; Lesne et al., 2003), we have found no evidence that there is upregulation of APP in these animals, nor that the thioflavin-labeled deposit contains amyloid-β, or any other amyloid for that matter (Galea et al., 2002). The notion that TGFβ-induced inflammation can cause Alzheimer disease-like vascular amyloid angiopathy should be thus thoroughly revised.

    4. In conclusion, work in mice demonstrates the potential of TGFβ to perform “good” and “bad” actions in brain. The questions remains as to: i) what exactly determines that TGFβ be neuroprotective or detrimental; ii) the mechanisms underlying both actions; iii) the amyloidogenic role of TGFβ in vivo; and iv) whether the TGFβ overexpression detected in human brains in Alzheimer disease (Wyss-Coray et al., 1997) contributes to the pathology, or is a protective reaction. The evidence in this regard is at the moment just correlative.

    View all comments by Elena Galea
  2. Q&A with Tony Wyss-Coray. Questions by Tom Fagan.

    Q: In your recent paper, you show that TGF-β1 may offer protection against excitotoxic injury to neurons. In previous papers, you had seen evidence that the cytokine may be toxic. Do the present observations take precedence?
    A: We reported previously that TGF-β1 has detrimental effects on the cerebrovasculature in old TGF-β1 transgenic mice. This was not due to a toxic effect but more likely due to an inhibition of regenerative activities in blood vessels. From studies in peripheral organs and cell culture, it is evident that TGF-βs are produced by, and modulate, almost any cell type in the body. It is increasingly clear that TGF-βs can often exert positive and negative effects on a given biological process based on TGF-β concentration and receptor composition. For example, low levels of TGF-β1 appear to promote angiogenesis and vascular cell proliferation, but high levels inhibit cell growth and promote differentiation.

    Consistent with these effects in the periphery, overexpression of TGF-β1 from astrocytes at intermediate to high levels resulted in vascular fibrosis and amyloidosis (defined as thioflavin S-positive deposits) in our model. In aged mice, the vascular changes were more prominent and accompanied by vascular cell abnormalities. Overexpression at very high levels resulted in hydrocephalus, likely due to excessive production of extracellular matrix proteins at the sites of CSF resorption. We have not investigated the effects of low levels or acute production of TGF-β1 in the CNS.

    Our latest experiments show that TGF-β1 has trophic effects on neurons that cannot be substituted by other factors. These effects are likely to be independent of the vasculature, since survival of isolated TGF-β1-deficient neurons is impaired. It will be important to dissect the molecular mechanisms underlying this dependence and determine whether these effects are direct or involve glial cells.

    Finally, we observed and reported prominent effects of TGF-β1 on glial cells in TGF-β1 transgenic and knockout mice. TGF-β1 overexpression results in a prominent astrocytosis, particularly around cerebral blood vessels, and we have speculated that this activation is a response to TGF-β1’s effects on endothelial cells (these cells express unique TGF-β receptors, called endoglin and ALK1, which are most likely not expressed on other CNS cells). TGF-β1 overexpression resulted also in increased microglial activation in the hippocampus of aged mice but, curiously, lack of TGF-β1 expression resulted in an even more dramatic activation of these cells (but not in astrocytosis).

    Taken together, TGF-β1 appears to modulate activation states and behavior of all cell types we have analyzed. Obviously, we are just at the beginning of trying to understand what the consequences of TGF-β1’s actions are on these cells.

    Q: Has your view of the role of TGF-1 changed over the past six years?
    A: Not in the sense that we found contradictory effects, but that I did not anticipate its importance. The work with TGF-β1 transgenic mice has been interesting and rewarding. I had never expected that we would see—and keep seeing—so many different effects of this factor in the brain.

    Q: In your recent paper you expressed TGF-β1 in astrocytes. Is it expressed in neurons, too? Is its neuronal expression physiologically relevant?
    A: TGF-β1 appears to be expressed by neurons, but data are sketchy. Clearly, neuroblastoma cells express TGF-β1. More importantly, however, neurons express functional TGF-β receptors, and primary hippocampal neurons can be stimulated by TGF-β1. It is too early to say at this moment what the physiological role of TGF-β signaling in neurons is. Our experiments, together with studies by many others, show that it might have a protective function in neurons; others have suggested that it modulates synaptic facilitation, or promotes neuronal cell death during embryogenesis. Again, these functions are not exclusive.

    Q: In her comment, Elena Galea mentioned some factors, such as the level of expression, the type of animals used, etc., that may explain the apparent differences in response to TGF-β. How do you explain these differences?
    A: I agree with most comments made by Dr. Galea, but I am not sure how she arrives at the conclusion: “The notion that TGF-β1-induced inflammation can cause Alzheimer’s disease-like vascular amyloid angiopathy should be thus thoroughly revised.” Our studies provide clear evidence that TGF-β1 overexpression from astrocytes in our model results in cerebrovascular amyloidosis (thioflavin S-positive deposits) (Wyss-Coray et al., 1997) and degeneration in old age ( Wyss-Coray et al., 2000). When these mice were crossed with hAPP mice, we observed a dramatic change in distribution of human Aβ: Most Aβ accumulated in cerebral blood vessels in hAPP/TGF-β1 mice (Wyss-Coray et al., 1997). Interestingly, there was a three- to fourfold reduction in Aβ in the brains of these mice. We concluded that TGF-β1 promotes amyloidogenesis in the vasculature while reducing Aβ deposition overall (Wyss-Coray et al., 2001). We were also able to show that, in human AD cases, TGF-β1 mRNA levels correlated positively with amyloid deposition in blood vessels and that TGF-β1 immunoreactivity was increased in blood vessels with amyloid deposits. Moreover, amyloid deposition in the vasculature correlated inversely with deposition in parenchymal plaques, a finding supported by several other groups, most recently by Tian et al., 2003.

    At this point, we still don’t know what the nature of the thioflavin S-positive deposits is in TGF-β1 single transgenic mice. Like many other pathologists, we called the deposits amyloid because of their specific color-imparting properties in binding thioflavin S. We believe that a biochemical analysis of the deposits will be necessary to identify their main protein component, but this experiment is very challenging to do, given the small quantities that can be obtained from a mouse brain (this is what we concluded in our initial report in Nature, 1997). Several groups have shown that TGF-β1 induces APP expression in cell culture, but we were not able to confirm this in vivo and never said so (this was misquoted by Dr. Galea). Unpublished observations from our lab showed a shift from shorter to KPI-containing splice forms of mouse APP at the mRNA level in TGF-β1 transgenic mice, but overall, there was no increase in mouse APP mRNA. Whatever the deposits are, they bind thioflavin S, are electron dense, and most importantly, they colocalize with human Aβ in hAPP/TGF-β1 mice. We demonstrated that TGF-β1 overproduction results in excessive accumulation of basement membrane protein in the vascular wall. We hypothesize that this results in the trapping of Aβ while it is being cleared, at least in part, via interstitial drainage channels along blood vessels or is transported across the blood-brain barrier into the plasma. There are likely small amounts of mouse Aβ present in these deposits, but this is a moot point given the prominent effect of TGF-β1 on human Aβ deposition.

    Q: Do you think the elevated levels of TGF-β in AD brains are a cause or an effect of AD?
    A: I don’t think increased TGF-β1 expression underlies AD. Rather, any form of cellular injury, as well as aging, results in increased production of TGF-β1 and activation of TGF-β signaling. There is a good possibility that this TGF-β1 modulates AD pathogenesis, similar to what we can observe in our mouse models.

    Q: What needs to be done next to nail down the role of TGF-β?
    A: Most studies on TGF-β focus on its peripheral effects. We need much more research focusing on its physiological function in the CNS. We recently generated a mouse that harbors a TGF-β response element in all cells of the body. The brain, in particular the hippocampus, showed several-fold higher baseline activity for this TGF-β response element than all other major organs (see ARF related news story). This further underlines the potential importance of this signaling pathway in the CNS. We will need to generate mouse models that directly inhibit or stimulate TGF-β signaling in a given cell type in vivo (using dominant negative or active TGF-β receptor transgenes or conditional knockouts), or use viral constructs to achieve this. Such models will be needed to further dissect the pathophysiological role of TGF-β in neurodegeneration and other CNS diseases, but they will also be helpful for electrophysiological and behavioral studies. Cell culture experiments using primary CNS cells will be needed to study the molecular mechanisms of TGF-β signaling. Again, we are just at the beginning.

    View all comments by Tony Wyss-Coray